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ACOUSTIC SOUNDING I N  THE PLANETARY BOUNDARY LAYER 

CHAPTER I 

INTRODUCTION 

I n  recent  years  i t  has  become increas ingly  evident 

;.hat a b e t t e r  understanding is  needed. of the  phys ica l  pro- 

zesses  which are a c t i v e  i n  t he  planetary boundary layer .  

‘?his need i s  e s p e c i a l l y  apparent i n  t n e  a reas  of low-level 

c l o u d  pred ic t ion ,  severe  weather  fa recas t1  nq, and t h e  pre- 

ciizcs101-i bf a i r  po l lu t ion  t ranspor t .  The study necessary for 

bet ter  iiiiderstanding of t hese  compiex processes  has  been ser- 

ieusly hampered by t h e  lack  of ava i l ab le  data.  I n  t h e  p a s t ,  

d i rect  sensing methods such a s  a i r c r a f t ,  instrumented towers, 

and balloon-borne packages have been used to  obta in  d a t a  f r o m  

t:he boundary layer .  ~ l l  of these  methods are expensive and, 

ic: v a r y i n g  degrees,  d i s t u r b  the  f i e l d  i n  whicn measurements 

.xe  being made. Thus, i t  has  been d i f f i c u l t  t o  ob ta in  t h e  

q u a n t i t y  and q u a l i t y  of d a t a  needed f o r  meaningful study. 

T h e  search  f o r  a s o l u t i o n  t o  t h e  problem of d a t a  c o l l e c t i o n  

1 
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i n  t h e  lower atmosphere has  l ed  meteorologis ts  t o  remote 

sensing. 

The chief  advantage of a remote sensing instrument 

i s  its a b i l i t y  t o  ga the r  information from reyions here-to- 

f o r e  inaccess ib le  o r ,  a t  best, d i f f i c u l t  t o  reach. The ob- 

serva t ions  a r e  made remotely, without requi r ing  t h a t  the 

instrument be placed i n  t h e  region from which information 

i s  desired.  With remote sensing t h e r e  i s  no d is turbance  o r  

modification of t he  f i e l d  from which d a t a  are  bci.ny co l l ec t ed .  

O f  t h e  remote sensing instruments deveioped i n  re- 

c e n t  years  t h e  most promising as a t o o l  f o r  boundary l a y e r  

study i s  %he acous t ic  radar .  Because t h e  atmosphere i s  t h e  

transmi.tting vehic le  f o r  sound waves, ~ C E :  acous t i c  radar  i s  

highly s e n s i t i v e  to  f l u c t u a t i o n s  i n  both temperature and ve- 

Iclci ty ,  much more so than remote sensors  employiriq e l e c t r o -  

iiiaqnetic waves. The acous t i c  r ada r  can t h e r e f o r e  be con- 

s t ruc t ed  from r e l a t i v e l y  simple equipment which r e s u l t s  i n  

a l o w  i n i t i a l  c o s t  compared t o  a l t e r n a t i v e  sounding methods. 

The acous t ic  radar  can provide continuous h igh- reso lu t ion  

observations automatical ly  and inexpensively.  

That t h e  propagation of sound i s  a f f e c t e d  by atmos- 

pheric  condi t ions has  been known f o r  hundreds of years .  

Digqes (1555) s t a t e d  t h a t  be l l s  being heard f a r t h e r  than 
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usual foretells of rain. However, no scientific study of 

sound waves and their interaction with the atmosphere was 

made until 1873. Tyndall (1875), while testing the audible 

range of various fog warning devices, found that the distance 

at which the same sound could be heard varied greatly from 

day to day. This variation was especially noted on days of 

similar visually observed atmospheric conditions, Tyndall 

also noted that while the sound became inaudible at some 

distance from its source, it was often heard again at some 

greater distance. He concluded that, at times, there existed 

concentric regions around the sound source in which the 

sound was alternately audible and inaudible. 

In the laboratory Tyndall constructed a tube in which 

he placed platinum wires. A small bell was placed at one end 

of the tube; a flame, sensitive to the slightest disturbance 

of the air, at the other. When the platinum wires were heat- 

ed, the flame was not disturbed by the sounding of the bell, 

Tyndall concluded that the temperature fluctuations of the 

air in the tube could attenuate the direct propagation of 

sound and lead to backscattering. He attributed the scat- 

tering of sound in the atmosphere to invisible "acoustic 

clouds,,.incessantly floating or flying through the air". 

After Tyndall's initial investigation, over 70 years passed 
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b e f o r e  t h e  t e c h n i q u e  w a s  s t u d i e d  a g a i n  as an a tmosphe r i c  

p robe  

I n  1944, Gilman e t  a l .  (1946)  used  a c o u s t i c  b a c k s c a t -  

t e r  t o  s t u d y  low- leve l  t e m p e r a t u r e  i n v e r s i o n s  and t h e i r  e f f e c t s  

on t h e  p r o p a g a t i o n  of microwave communications.  

amount o f  a tmosphe r i c  s t r u c t u r e  unde r  t h e  i n v e r s i o n s  w a s  de- 

t e c t e d  by a c o u s t i c  sounding ,  and a s t r o n g  c o r r e l a t i o n  was 

no ted  between the  ac0us t i . c  i n v e r s i o n  echo  and microwave fad -  

ing .  The c o n c l u s i o n s  reached  w e r e  t h a t  the b a c k s c a t t e r e d  

a c o i i s t i c  ene rgy  w a s  t h e  r e s u l t  n o t  o n l y  of s t r o n g  tempera- 

t u r e  g r a u i - e n t s  b u t  a lso,  of turb.ul .ent temperature f l u c t u a -  

t i o n s ,  aad  t h a t  these f l u c t u a t i o n s  w e r e  t h e  p r imary  c a u s e  

of b a c k s c a t t e r i n g .  The breakup of noctur1-:;11. i n v e r s i o n s  ant! 

the Iror'mat.ion of daytime t h e r m a l s  w e r e  a A . 5 ~  ot.:~:.;~rvc!d. 

An unexpected  

The f i r s t  s t e p  i n  t h e  evolu t i ion  of  acot1sti.c soundinq  

as  a t o o l  f o r  m e t e o r o l o g i s t s  o c c u r r e d  i n  1967. An a c o u s t i c  

sounding exper iment  w a s  set up i n  A u s t r a l i a  t o  s t u d y  t h e  t e m -  

p e r a t u r e  s t r u c t u r e  of t h e  l o w e r  a tmosphere  and i t s  r e l a t i o n  

t - o  abnormal p r o p a g a t i o n  of radio w a v e s .  The p r e l i m i n a r y  re- 

sults of t h i s  exper iment  w e r e  r e p o r t e d  by M c A l l i s t e r  ( 1 9 6 8 ) .  

I t  demons t r a t ed  t h a t  a c o n t i n u o u s  r e c o r d  of t h e  h e i g h t ,  move- 

i n e n t ,  and s p a t i a l  d i s t r i b u t i o n  of i n h o m o g e n e i t i e s  i n  t he  t e m -  

p e r a t u r e  s t r u c t u r e  o f  t h e  l o w e r  a tmosphere  c o u l d  be o b t a i n e d  
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; ) y  a c c ~ u s t I . ~ c ~  scjuncirq.  Later McAI.li : j tcr  &- i i909)  prc- 

s e n t e d  c? (?e-cai led r e p o r t  of t h i s  exper iment .  Var ious  mete- 

croioqical  phenozcna w e r e  examined such  a s  t h e r m a l  p l u m e s ,  

rrii: I 2 ti,nn i rivers ions ,  a:?d b reak ing  wac3es T 3  i s  experiment 

ronf  i.rmed t h a t  t u r b u l e n t  temperature and v e l o c i t y  f l u c t u a -  

r_isi?s a r e  t he  pr imary  scatterers of acoust,.;: energy .  it w a s  

onatrated t h a t  i t  i s  possible t o  s e p a r a t e  the  c o n t r i b u -  

- .  

t i c:r:ci t o  t h o  scat  t e rcd  ene rgy  made by the  temper&tl~:re f l u c -  

,..~.iat.:~c,n:i and by the vel   city f l u c ~ ~ a t . L c ) n : ;  i3y c;perar iny t iic 

:, .L,..,..ti " ,  \. 2 c c radar i n  t h e  i .nc l ined  mc.no::; tatic and i2istat.i.c mode 

; r i g *  lj . 

~ i - 1  a s t u d y  of t h e r m a l  plumes and. n o c t u r n a l  i n v e r s i o n s  

.;-3t..r-ay-t _- r_.t - al. (1371) used a c o u s t i c  scjunding equipment t o  de- 

' . r -zz 1 . ~ 2  v e r t i c a l  v e l o c i t i e s ,  By observing t h e  Conpler  s h i f t  

.!.a f r e t -pency  of t k e  b a c k s c a t t e r e d  a c o u s t i c  s i g n a l  t h e y  cai- 

r i i l - a ted  d e t a i l e d  vertical .  v e l o c i t y  p a t t e r n s ,  a c c u r a t e  tG 

2 rJ.2 n? sec 

t i c  Doppler s h i f t  as a means to  ga in  new i n s i g h t  i n t o  such 

;>rcjblerns a s  low- leve l  h e a t  flux and t h e  s t r u c t u r e  and motion 

.J  i- wave phenomena, 

-1 . They demons t r a t ed  t h e  p o t e n t i a l  of t h e  acous-  

I n  one  of t h e  m o s t  r e c e n t  s t u d i e s  CroRenwett e t  a l .  

( 1 9 7 2 )  h a v e  s u g g e s t e d  t h a t  the a c o u s t i c  r a d a r  may be u s e f u l  

in p r e d i c t i n g  t h e  fo rma t ion  and d i s s o l u t i o n  o f  low-level 
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s t r a t u s  clouds.  They a l s o  found t h a t  t h e  acous t ic  radar  i s  

capable of de t ec t ing  and measuring the  ve loc i ty  of s m a l l  

p a r t i c u l a t e  matter i n  t h e  a i r .  These measurements w i l l  be 

~f i n t c r c s t  i n  t h e  s t s d y  of po l lu t ion  d i f fus ion .  Marks ( 1 9 7 2 )  

has suggested another app l i ca t ion  of t h e  acous t i c  radar  t o  

a i r  pGllution meteorology. In  observing nocturnal  inversions 

he found t h a t  t h e  acous t i c  radar  d a t a  r evea l  a r eas  of s t rong 

temperature g rad ien t s ,  areas of tu rbu len t  mixing, and t h e  

exact t i m e  of invers ion  breakdown. Marks also found t h a t  

che amount of f i n e  s t r u c t u r e  revealed by the  acous t i c  radar  

record cannot be a t t a i n e d  by conventional instruments.  

The purpose of t h i s  research i s  threefo ld :  t o  add t o  

t . he  knowledge of p a t t e r n  recogni t ion  and i n t e r p r e t a t i o n  of 

acocstic radar  da t a ;  t o  demonstrate t h e  usefu lness  of t h e  

acoust ic  radar  a s  a t o o l  f o r  meaningful s tudy of t h e  lower 

atmosphere; and t o  ga in  knowledge of t h e  processes  i n  a c t i o n  

i n  t h e  boundary l aye r .  TWO a r eas  of i n t e r e s t  have been in-  

ves t iya ted .  F i r s t ,  a s tudy was made of acous t i c  r ada r  d a t a  

coll-ectcd during t h e  passage of a mesoscale co ld-a i r  i n t r u -  

sion and a weak co ld  f r o n t .  Resul t s  are presented as case 

s tudies  r e l a t i n g  t h e  synopt ic  s i t u a t i o n  obtained from conven- 

cional t e l e type  and f acs imi l e  d a t a ,  t h e  acous t i c  r ada r  record,  

and t i m e  sec t ions  of temperature,  wind speed, and wind 
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t 

direction obtained from the meteorologically instrumented WKY 

television tower. In these case studies, attention is focused 

on the interpretation of the acoustic radar data. 

I n  the second area of interest, attention is aimed at 

the relationship between the nocturnal temperature inversion 

and the low-level wind maximum. The WKY tower data are dis- 

cussed in the light of theory presented by Blackadar (1957) 

on the interactions of these phenomena. In the presentation 

of the results of this study, the acoustic radar data will 

play an important supportive role. 



CHAPTER I1 

ACOUSTIC W A R  THEORY 

Transmission of acous t ic  energy i n t o  t h e  atmosphere 

may result i n  r e f l e c t i o n ,  absorpt ion,  or scattering. Re- 

f l e c t i o n  occurs when the  acous t ic  energy encounters sharp 

g rad ien t s  i n  the mean a i r  temperature. Atmospheric absorp- 

t i o n  reduces the e f f e c t i v e  range of t h e  radar  by decreasing 

t h e  amount of energy ava i l ab le  f o r  r e f l e c t i o n  o r  s c a t t e r i n g .  

Absorption v a r i e s  d i r e c t l y  with t h e  t ransmi t ted  frequency 

and t h e  r e l a t i v e  humidity of t h e  a i r  and inve r se ly  with the  

Lemperature.  Sca t t e r ing  of acous t i c  energy is caused by 

turbulen t  f l uc tua t ions  of both wind v e l o c i t y  and tempera- 

ture. Variat ions of w a t e r  vapor p re s su re  a l s o  cause scat- 

t e r ing  of acous t ic  energy. However, c a l c u l a t i o n s  made by 

M c A l l i s t e r  -- e t  a l .  (1969) i n d i c a t e  t h a t  t h e  e f f e c t s  of water  

vapor are below t h e  threshold of d e t e c t a b i l i t y  of p re sen t  

equipment. 

The theory of t h e  s c a t t e r  of acous t i c  energy i n  dry 

air has been presented by Monin (1962). For a KolmOgOrOV 

8 
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I spectrum of turbulence, Monin's equation Gzscribing the scnt- 

tering of sound reduces to (Little, 1969) 

* (1) 
2 cv 2 c: -11/3 

2 

u (  0) = 0.031~~'~ COS 9 (- cos S + 0.13 2) (sin (3) 2 2 T 2 C 

where a(0) is the scattered acoustic power per unit volume 

per unit incident flux per unit solid angle, at angle 0 from 

the initial direction of propagation, k = 2r/X is the wave 

number of the acoustic wave, and C and T are the mean speed 

oE sound and the mean temperature of the scatLcring volume. 

The values of Cv and CT may be obtained from measurements of 

their respective structure functions given by 

and 

2 2 2/3 
= [Tjx) - T(x+r)] = cT r I DT 

where v(x) and v(x+r) are the instantaneous wind speeds at 

the points x and x+r in the x to x+r direction and T(x) and 

T(x+r) are the instantaneous temperatures at x and x+r. 

Thus, C ,  and C$ are, respectively, the mean square of the 

differences in velocity and temperature between two points 

separated by a unit distance. 

2 

Eq. 1 shows that: (1) acoustic energy is scattered 
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by fluctuations of both wind velocity and temperature; 

(2) both wind- and temperature-scattering terms are multi- 

2 plied by cos 8: therefore, no acoustic energy will be scat- 

tered at an angle of 90' from the direction of propagation; 

( 3 )  both scattering terms are multiplied by (sin -) Q -1113. 
2 

hence, most of the acoustic energy is scattered into the 

forward hemisphere: (4) scattered acoustic energy varies 

weakly with the wave length; and ( 5 )  the wind term is mul- 

tiplied by cos2fi, which means all backscattered energy 

( 0  = 180 1 is the result of temperature fluctuations only. 
2 

0 

Item 5 above is applicable to the present research. 

All acoustic radar data used in this study were collected by 

operating the radar in a vertically-directed monostatic mode 

(Fig. 1). 

Considering only the backscattering of acoustic energy 

McAllister et al. (1969) have shown that, for isotropic homo- 

geneous turbulence, 

P, = 0.5 ( P C ~ A L ~ )  R - ~  ( 2 )  

where Pr is the power received (w), P is the transmitted 

power (w), 7 is the transmitted pulse length (sec), A is the 

collecting area of the antenna (m ) ,  L is an attenuation fac- 2 

tor which accounts for transducer and antenna efficiencies 

and atmospheric absorption, R is the range (rn), and T is t h c  
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s c a t t e r e d  power per u n i t  volume per u n i t  i nc iden t  f l u x  p e r  

u n i t  s o l i d  angle  i n  t h e  backsca t te r  d i r e c t i o n .  The equat ion 

for D is  given as 

(J = 0.008 (C,3-1/3) T-2 

where 1 i s  t h e  t r a n s m i t t e r  wave length (cm). 



CHAPTER I11 

DESCRIPTION O F  THE ACOUSTIC RADAR AND THE 

INSTRUMENTED TOWER FACILITY 

The acous t ic  radar  used i n  t h i s  research w a s  con- 

s t ruc t ed  and placed i n  operat ion a t  t h e  Universi ty  of Okla- 

homa i n  1971 .  Bas ica l ly ,  the  acous t ic  radar  i s  a convent ional  

pulsed radar  which t ransmi ts  a b r i e f  b u r s t  of acous t ic  energy. 

Backscattered and r e f l e c t e d  energy i s  then received a t  some 

l a t e r  time and displayed. Fig. 2 shows the  func t iona l  block 

diagram of t h e  radar  and Table 1 l i s t s  the  equipment para- 

meters . 
The cyc le  of operat ion begins  a t  t h e  facs imi le  re- 

corder. When t h e  recorder  begins  i t s  t r a c e  across  the  paper, 

a synchronizing pulse  i s  s e n t  t o  t h e  tone b u r s t  generator .  

This pulse  allows the  tone b u r s t  genera tor  t o  pass a sho r t  

burst  of audio s i g n a l  from t h e  audio o s c i l l a t o r  through a 

r i l t e r  to the power ampl i f i e r .  The amplif ied audio pu l se  i s  

conveyed by t ransmission l i n e  t o  t h e  t ransducer  s i t e .  There 

t h e  t ransmit-receive (TR) switch couples  t h e  audio pulse  t o  

12 
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t h e  d r i v e r  which i n  t u r n  produces v e r t i c a l l y - d i r e c t e d  sound. 

The TR switch provides a very important funct ion.  While i n  

the  t ransmi t  mode t h e  TR s w i t c h  disconnects t h e  r ece ive r  

s ec t ion  of t h e  r ada r  f r o m  t h e  t ransducer ,  This prevents  

t h e  high-power t ransmi t ted  pu l se  f r o m  en te r ing  t h e  r e c e i v e r  

s ec t ion  and a l l o w s  t h e  t ransducer  to be used as a t r ans -  

m i t t e r  and a rece iv ing  antenna. 

I 

A s h o r t  t i m e  a f t e r  t ransmission has  begun, t h e  se- 

quence t i m e r ,  a c t i v a t e d  by a pulse  from tne t c n e  b u r s t  gen- 

crstor a t  t h e  beginning of transmission, resets t h e  TR switch 

t o  t h e  r ece ive  mode, The sequence t i m e r  also i n i t i a t e s  t h e  

genera t ion  of a vo l tage  ramp which increases  l i n e a r l y  with 

t i m e  during each cyc le ,  The acous t ic  s i g n a l  amplitude de- 

CrEtases as range increases .  By multiplying t h e  received 

acous t i c  s i g n a l  by t h e  vol tage  ramp, d is turbances  of equal  

amplitude, bu t  a t  d i f f e r e n t  he ights ,  w i l l  be depic ted  as 

silch. 

The r e tu rn ing  acous t i c  energy i s  converted t o  a vol-  

t age  by t h e  t ransducer  and conveyed through t h e  TR switch 

b t o  t h e  preampl i f ie r .  The returned s i g n a l  then passes  through 

the r e c e i v e r  and t h e  ampl i f i e r  t o  t h e  m u l t i p l i e r .  H e r e  t he  

v o l t a g e  ramp i s  appl ied.  The s igna l  then passes  through t h e  

r eco rde r  d r i v e r  and on t o  t h e  facs imi le  recorder  where it is  
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displayed visually. This ends the cycle. The received sig- 

nal may also be recorded on magnetic tape or displayed on 

an os c i 1 1 os cope. 

Since June, 1972, the University of Oklahoma acous- 

tic radar has been in operation at a site near the meteor- 

<;logically instrumented WKY television tower. The tower 

is located about 6 n mi north of Oklahoma City, Oklahoma. 

The terrain around the tower-radar site is gently rolling 

and covered with wild grass and weeds. The radar is sit- 

ilat.ed about 450 m from the tower. The tower is 458 m tall 

and is instrumented at seven levels (23, 45, 90, 177, 266, 

355 ,  444 m) . 
Horizontal wind speed, wind direction, and tempera- 

ture are measured at all seven levels of the tower facility. 

Mcasurcments of wind speed and direction are made with a 

13endi.x Model 120 Aerovane. The wind ?peed sensor has a 

threshold speed of about 0.85 m sec", a distance constant 1 

of 5 m, and an accuracy of 2 0.25 m sec". At each level an 

Acrovanc is mounted 10 ft from the tower on a boom attached 

to the tower. The temperature measurements are made by a 

cornhination of two independent systems. The ambient System 

makes an absolute ambient temperature measurement at 23 and 

The distance constant is defined as wind passage by 
the  propeller required for the anemometer output to reach 
63% of a step speed change. 

1 
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444 m, The d e l t a  system measures d i f f e rence  temperatures 

a t  a l l  l e v e l s  referenced t o  t h e  ambient reading a t  t h e  444-m 

l e v e l .  The sensors  a r e  l i nea r i zed  thermis te r  composites 

housed i n  hea t  s ink  s t a i n l e s s  s t e e l  probes,  which a r e  mounted 

i n  motor a sp i r a t ed  r a d i a t i o n  sh ie lds ,  This s h i e l d  reduces 

r a d i a t i o n  heat ing e f f e c t s  t o  less than O , l l ” C ,  The absolu te  

accuracy of t h e  thermis tors  has been found t o  be within 0.2OC. 

Each d e l t a  t h e m i s t o r  is c a l i b r a t e d  t o  t h e  reference ther -  

m i s t e r  a t  t he  444-m l eve l ,  with t h e  depar ture  from t h e  re-  

ference within -f 0,06°C, 

The G i l l  p rope l l e r  anemometer model 27100 i s  used 

tc. measure the  v e r t i c a l  component of wind v e l o c i t y  a t  23, 

177, ax?d 444 m. The threshold speed f o r  this instrument is  

aboitt 0 . 2 5  m sec-l and i L s  accuracy is  better than 0 - 1 2  mi 

sec - A t  t hese  same th ree  l eve l s  the  wet-bulb temperature 

i s  measured with a cloth-wrapped thermistor  mounted i n  a 

motor a s p i r a t e d  sh ie ld ,  The c lo th  is kept moist by a cap i l -  

l a r y  sys t em.  

-1 

Atmospheric pressure i s  measured a t  t he  base of t h e  

tower with a Be l fo r t  Model 6068 Microbarograph with a d i g i t a l  

output .  Changes i n  pressure a r e  sensed by a bellows t h a t  

t r a n s m i t t s  i t s  motion through a s y s t e m  of l e v e r s  and gears  t o  

a low-torque potentimometer, A dc vol tage  i s  appl ied t o  the  
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potent ione ter  and i ts  outpct is a dc vo l tage  propor t iona l  c o  

the pressure.  The  i n s t r u m e n t  has an a l s o l u t e  accuracy of 

- ci. 5 mi, with a serisit-.ivit.y of ? 3.  2 ml>. e- 

F,L  ~ : : e  da ta  col1cct;cci by ti::.? tc,wer j.nst.rimc?ni::; a r c  re- 

corded by two independent s y s  terns. The analog system records 

aJ1. w i n d ,  temperature, and pressure  d a t a  on s t r i p  c h a r t s .  

;rile d i g i t a l  s y s t e m  records this data on maqnetic tape.  In 

t9,i.s syst .cn: c;ch input  chi lnnel  .is appi ied tc ,  a 100-channel 

:scanner - The scanner seq! ien t ia l  i y  s c m s  t ! I r b > ' i i < 7 h  a n y  pre- 

:jet. riurnl>er c7f chaniic?ls from 1 to 3 . 0 ~ ~  a i  a r G t r _ .  C I E  200 than- 

ncls scc  . T h e  sclcctcd o:itput c : f  t l l r ?  scdnricr is diqi t i .zed 

j.11 a thret;-l;--r: UCD word. U;! ;K  mala2  t:o di.yj . ta1.  conver te r .  

' L ' ~ ! : ~ L  t l i g i  t:+l tl: LCI art: theti co!n!>iac:?, :.I i..r.!l t ir,c d a t a  i n  an I L\M 

compat~I~1e Ccrmat and w r i  t t e n  cn n i a q n e c  i c  t apc~ .  

-1 

The cii.(ji t a l  recording system i s  q u i t e  f l e x i b l e  and 

!.,f!tera a w i c ? e  choice of .;ampling r a t e s  and d a t a  record lengths .  

7 t - i ~  r a p i d l y  changing weather condi t  ions the svs tern can scan 

.zii<i record all parameters a t  2-scc i n t e r v a l s .  The d a t a  used 

ii-  th i s  s t u d y  w e r e  r-ampled a t  l - m i n  i n t e r v a l s .  

A crmplete d e t a i l e d  d e s c r i p t i o n  of t h e  W K Y  tower 

fx : i  1 i t.y 11~3s  Ixen reported by Carter (19'70) . 



CHAPTER I V  

INTERPRETATION OF ACOUSTIC RADAR DATA 

To f u l l y  r e a l i z e  t h e  capabili t ies and t h e  p o t e n t i i l  

usefu lness  of t h e  acous t i c  radar, knowledge must be gained 

i n  the  a rea  of p a t t e r n  recogni t ion and i n t e r p r e t a t i o n  of the 

. 

radar  data, It i s  t o  t h i s  end t h a t  t hese  s t u d i e s  are pre- 

:i en  t ed . 
The f i r s t  case s tudy examines i n  d e t a i l  d a t a  c o l l e c t -  

cd c!t7ri  ny t h e  passage of a s h a l  l o w  ~~icsoscalc co ld-a i r  i n t ru -  

s ion .  I t  i s  be l ieved  the  co ld  air w a s  thunaerstorm outflow. 

i iravy thunderstorm a c t i v i t y  had begun i n  southeas te rn  Kansas 

i n  t he  e a r l y  af ternoon and had continued u n t i l  s h o r t l y  before 

midnight. It  w a s  f r o m  t hese  thunderstorms t h a t  t h e  co ld  a i r  

i.3 thought t o  have or iy ina ted .  It w a s  then c a r r i e d  by t h e  

ad2ient flow i n t o  c e n t r a l  Oklahoma. I n  t h e  second case, 

data collected during t h e  passage of a shallow synoptic- 

scale c o l d  f r o n t  i s  examined. 

I 

I t  should be of i n t e r e s t  here  t o  make some compari- 

scns on t h e  observed s t r u c t u r e  and behavior of t h e  mesoscale 
1 7  



c o l d  i n t r u s i o n  and t h e  synopt ic-scale  f r o n t .  Both 2henomena 

displayed a leading head2 of co ld  a i r  i n  t h e  c e n t e r  of which 

w a s  a c o r e  of c o l d e s t  a i r .  The leading head of the cold  in- 

t h e  co ld  f r o n t  w a s  almost v e r t i c a l .  This  w a s  more a func t ion  

of wind speed as the i n t r u s i o n  w a s  accompanied by s t ronge r  

winds. On the  leading edge o f  both t h e  i n t r u s i o n  and t h e  

f r o n t ,  t h e  h o r i z o n t a l  temperature g r a d i e n t  w a s  weakest a t  

t h e  sur face .  This was due t o  turbulent  mixinc; w i t h  w a r m e r  

t h c  su r face  f e l l  as the f ron t  passed but increased  behind t h e  

The wind s t r u c t u r e  (.)E the  two phcriornena was quitch 

; ~ ~ " i 1 . a r  e x c e p t  f o r  t h e  d i r e c t i o n  o: c h c  w i n d  shif: .  Therc 

wds  r h t  appca;aniie o E  a ld'y'er of maxLmum winds above t h e  sur -  

face i n  t h e  co ld  a i r .  This w a s  espcr5c:ially noted in  t h e  case 

o f  t h e  co ld  f i -onk .  The f r o n t  w a s  made up of t h r e e  s e p a r a t e  

:;crgcs of cc.1~1 a1.r. Each surge  d isp layed  a wind maximum. 

'rke wind s h i f t  i n  each case occurred a t  t h e  s u r f a c e  be fo re  

the Cold a i r  a r r ived .  Above t h e  s u r f a c e  t h e  s h i f t  came with 

3 
&'The term head, used h e r e  as an analogy t o  heads i n  

labora tory  g r a v i t y  c u r r e n t s ,  describes t h e  area a t  t h e  f r o n t  
~ f l  t h e  co ld  a i r  m a s s  where t h e  depth  of t h e  cold a i r  1s 
j ec;)ter than a t  p o i n t s  upstream. 
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t h e  co ld  a i r .  The most obvious d i f f e rence  i n  t h e  wind s t r u c -  

t u r e  is  the  d i r e c t i o n  of t h e  wind s h i f t .  A s  t h e  co ld  f r o n t  

passed, t h e  wind d i r e c t i o n  changed i n  a clockwise sense 

f o r  a synopt ic-scale  co ld  f ron t .  The wind s h i f t  accompany- 

ing the  co ld  i n t r u s i o n ,  although s l i g h t ,  was i n  t h e  oppos i te  

sense.  This d i f f e r e n c e  w a s  t h e  majcr i nd ica to r  t h a t  tnese 

two phenomena, although s i m i l a r  i n  many r e spec t s ,  w e r e  on 

d i f f e r e n t  scales of atmospheric motion. 

Case I 

The su r face  synopt ic  s i t ua%ion  f o r  0000 C S T  21 J u n e  

1 3 7 2  i s  shown i n  F ig .  3 -  A cold frofit which passed the 

Oklahoma C i t y  a rea  22  h r s  ear l ie r  wa.q lc,c.it-.+ *dri  a 1,uhbock- 

Dallas-Texarkana l i n e  moving sc;uthward a t  8 - l G  k t .  The f r o n t  

cxrendcd nQrtheastward from 'Texarkana i n t o  t h e  Chicago area .  

Winds behind +_ne f r o n t  throughout Oklahoma w e r e  f r o m  tne 

nGrthEast qua",rant, A surface high pres su re  c e n t e r  w a s  s i t -  

uated on t h e  c e n t r a l  Nebraska-South Dakota border. A t  t h e  

850-mb l e v e l  t h e  co ld  f r o n t  was about 20-30 n m i  south of 

Oklahoma City; winds behind t h e  f ront  a t  t h a t  l e v e l  w e r e  from , 

the eas t -nor theas t .  There w a s  an area of s c a t t e r e d  moderate 

thunderstorms along and behind the su r face  f ron t  i n  extreme 

sou theas t e rn  Oklanoma, northwestern Texas, and southwestern 
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Arkansas. There w a s  an area of l i g h t  thunderstorms i n  north- 

western Oklahoma and t h e  northern Texas panhandle, and moder- 

a t e  rainshowers w e r e  occurr ing i n  southeastern Kansas. These 

.- L a i l l . - , l J u w - L  - -,-I.. r.._.- - / -  3 ~ e r e  the reirisins of the  t h ~ f i d e r ~ t ~ r ~  a ~ t i ~ i ~ y  

discussed ear l ie r .  Clouds over t h e  s i te  cons is ted  of two 

broken l aye r s ,  one a t  12000 f t  and t h e  o the r  a t  25000 f t .  

T h e  c!.c\~id cover remained unchanged between 0000 and 0 8 O C  C S T .  

At 0000 CST t h e  ai .r  i n  the lower 450 m a t  the  radar  

s i t e  w a s  near ly  isothermal with only a l ° C  drop from t h e  

sLrface t-.o t h e  top  of t he  tower (Fig.  3b). 'The wind speea 

increaccii rap id ly  from t h e  s u r f a c e  t o  175 m,  .then remained 

:?early constant above t h a t  l e v e l  (Fig.  4 d ) .  Mixing cause6 

U;, t h e  stironq v e r t i c a l  shear  i n  t h e  su r face  t o  175  m l a y e r  

co!rib~.nc?d. w i t h  t h e  tcmnperature l apse  r a t e  less than dry adia-  

L)L+ t-ic t:o produce turbulen t  temperature f luc tua t ions .  These 

E:l uctuations were recorded a s  backsca t te red  ac0usti .c e n e r y y  

on the  radar  record (Fig.  4 a ) .  The he igh t  of t h e  recorded 

echoes corresponds c l o s e l y  with t h e  he igh t  of t h e  s t rong  

shear layer  (Fig.  4d ) .  Above 1 7 5  m t h e  r ada r  record indi- 

n a t e s  the absence of t u rbu len t  temperature f l u c t u a t i o n s  a l -  

though t h e  temperature p r o f i l e  i n  t h i s  reg ion  w a s  much l i k e  

t h a t  below 1 7 5  m, i .e.,  a l a p s e  r a t e  t h a t  w a s  less than dry 

ad iaba t ic .  The weak v e r t i c a l  wind shea r  above 175 m y ie lded  
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t h i s  r e s u l t .  As shown by t h e  radar  record (Fig.  4 a ) ,  t h i s  

s i t u a t i o n  continued wi th  l i t t l e  change u n t i l  0045 CST. 

There was a gradual  bu t  s i i g h t  i nc rease  i n  the  depth 

of t h e  s t rong  shear  l a y e r  between 9000 and 0045, This in- 

c r ease  i s  m o r e  no tab le  i n  t h e  radar  record than i n  t h e  wind 

speed d a t a  from t h e  t o w e r  (Fig. 4d) ,  One can a l s o  see a 

raggedness i n  t h e  he ight  of t h e  recorded echoes which cannot 

be seen i n  t h e  analyses  of t h e  t o w e r  da ta .  I t  nus t  be point-  

ed out  h e r e  t n a t  t he  acous t i c  radar  is  recording a v e r t i c a l l y  

continuous observat ion every four  seconds and the  tower in- 

struments a r e  sampling t h e  parameters a t  one-minute i n t e r v a l s  

and are mounted a t  l e v e l s  phys ica l ly  separa ted  by a s  much as 

89 m. The radar  can, t he re fo re ,  revea l  f i n e  s t r u c t u r e  which 

w i i l  n o t  be found i n  t h e  tower data .  The black d o t s  seen on 

t h e  r a d a r  record a t  0027, 0033, and 0042 CST a t  var ious  he igh t s  

are probably echoes f r o m  b i r d s  or  l a r g e  bugs. These observa- 

t i o n s  are q u i t e  common. 

A t  0045 CST t h e  co ld  i n t r u s i o n  passed t h e  s i te .  The 

passage w a s  marked by decreasing temperature a t  a l l  l e v e l s  

(Fig.  4 b ) ,  a s l i g h t  wind s h i f t  i n  t h e  su r face  t o  360-m l a y e r  

(F ig ,  4 c ) ,  and an inc rease  i n  wind speed (Fig.  4d) .  The 

h o r i z o n t a l  temperature g rad ien t  across  t h e  leading edge of 

I t h e  c o l d  a i r  was s t ronges t  i n  t h e  250 t o  350-m l aye r .  
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Surface f r i c t i o n  apparent ly  was r e t a rd ing  t h e  advance of the  

cold a i r  a t  t he  sur face .  The r e t a r d a t i o n  r e s u l t e d  i n  a pro- 

t ruding nose on t h e  leading edge of t h e  co ld  a i r .  Turbulent 

. .  
n - - ~ ~ n r r  ef the cold air afis the  amhiefit air t h e  p ~ 9 -  
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t ruding nose had weakened t h e  h o r i z o n t a l  temperature g rad ien t  

in t h i s  region (Fig.  4b ) .  The temperature drop accompanying 

t h e  cold i n t r u s i o n  a r r ived  f i r s t  and was sharpes t  a t  t he  

l e v e l  of t he  protruding nose. 

The passage of t he  co ld  i n t r u s i o n  i s  q u i t e  no tab le  

on the  acous t ic  r ada r  record (Fig.. 4 a ) .  A t  0045 CST t h e  

appearance of t h e  r ada r  d a t a  changed abrupt ly .  A s  t h e  pro- 

tirudinq nose cooled the  l aye r  between 250 and 350 m, t h e  

lapse  r a t e  from the  su r face  t o  350 m began t o  approach t h e  

d ry  ad iaba t i c  l apse  r a t e .  The temperature p r o f i l e s  f o r  0035 

m c i  0051 a r e  shown i n  Fig. 5. These p r o f i l e s  r evea l  t h e  

change which occurred a s  t h e  nose of co ld  a i r  passed t h e  

tower. The wind shear  i n  t h e  s u r f a c e  t o  1 7 5  In l a y e r  weak- 

ened rap id ly  following the  passage of t h e  co ld  a i r  (F ig .  4 d ) .  

'The d r y  dd iaba t ic  l a p s e  r a t e  and weak shear  reduced t h e  poss i -  

1) L lity o f  t u r b u l e n t  temperature f l u c t u a t i o n s  and hence pro- 

duced a n  absence of echoes i n  t h e  su r face  t o  350 m l a y e r  

(Fig. 4 a ) .  The tu rbu len t  mixing below t h e  protruding nose 

can be seen a s  an a rea  of weak echoes a t  t h e  su r face  b e t w e e n  
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0045 and 0052 CST. The upper boundary between t h e  ambient 

a i r  and t h e  co id  a i r  i s  marked by a l a y e r  of echoes approxi- 

mately 100 m i n  depth. This r e su l t ed  from both backsca t te r  

from turbulen t  mixing between t h e  two a i r  masses and r e f l ec -  

t i o n  from t h e  s t rong  v e r t i c a l  temperature grad ien t  a t  t h e  

350-m l e v e l  (Fig. 4b). The he ight  of t h i s  s t rong v e r t i c a l  

g rad ien t  decreased behind t h e  upraised leading nose. ~ This 

decrease i n  he ight  i s  noted on t h e  radar  record (Fig. 4a)  

as the  he ight  of the  echo l a y e r  began t o  lower s h o r t l y  before  

0100 CST, 

A f t e r  t h e  cold a i r  passed a t  t he  sur face ,  t he  l apse  

r a t e  f r o m  t h e  sur face  t o  325 m was no longer equal t o  but  

less than t h e  dry  ad iaba t i c  lapse  r a t e .  The temperature 

p r o f i l e  f o r  0107 is  shown i n  Fig. 5. A t  t h i s  same t i m e  t he  

wind speed i n  the  lower 200 m became q u i t e  gusty and t h e  

wind shear  i n  t h i s  l a y e r  increased (Fig.  4d ) .  The r e s u l t a n t  

t u rbu len t  mixing is seen on the  acoust ic  radar  record a s  t h e  

bottom of t h e  echo l aye r  became quite ragged and echoes w e r e  

seen near  t h e  surface.  By 0115 the l apse  r a t e  below 180 m 

w a s  again near ly  dry ad iaba t i c  (Fig. 5) a s  cold advection 

a t  180 m was s t ronger  than a t  t h e  surface.  Although the  

wind shea r  continued s t rong  and t h e  wind speed gusty u n t i l  

0138 (Fig.  4d) t h e  lower ragged echoes disappeared from t h e  
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radar  record a t  0113 (Fig.  4a) i n  response t o  t h e  dry adia-  

b a t i c  l apse  r a t e .  

. 

O n  the  leading edge of t h e  co ld  in t rus ion  thc 1ni.n.i- 

mum temperature i n  t h e  co ld  a i r  w a s  near  340 m. Upstream i n  

t he  co ld  a i r  t h e  l e v e l  of minimum temperature decreased. By 

0130 CST t h e  minimum temperature w a s  a t  250 m (Fig.  4 b ) .  B e -  

L o w  t h i s  l e v e l  t h e  l apse  ra te  was nea r ly  dry  ad iaba t i c .  Above 

250 m s. temperature invers ion  ex i s t ed .  Fig.  5 shows t h e  

temperature p r o f i l e  f o r  t h i s  t i m e .  Upstream behind t h e  pro- 

t ruding nose and j u s t  above t n e  l e v e l  of m i n i m u m  temperature 

i n  t h e  co ld  a i r  w a s  a l a y e r  of maximum wind s p e d  (Fig .  4d ) .  

The wind speed maximum f i r s t  appeared a t  0116. A t  0130 tiic 

ver t ica .1  shear  assoc ia ted  wi th  t h e  wind speed maximum m u  

the invers ion  above 250 m produced if l aye r  of echoes on t h e  

radar  record from 250 t o  450 m. By 0147 t h e  l e v e l  of mini- 

r c i m  temperature had lowered t o  235 m as t h e  leading head of 

co.'I.d a i r  passed t h e  s i t e  (Fig.  4 b ) .  Preceding t h e  a r r i v a l  

of t h e  deeper co ld  a i r  t h e r e  was a broad region of upward 

v e r t i c a l  motion a t  t h e  444-m l e v e l  with v e l o c i t i e s  on t h e  

1 order  of 0.5 t o  1.0 m sec- . A t  23 m t h e  motion w a s  down- 

w a r d  wi th  v e l o c i t i e s  as h igh  as 1.1 m sec-' recorded. 

0147 t h e  v e r t i c a l  wind shear  w a s  s t rong  i n  t h e  l a y e r  between 

250 and 375 m (Fig.  4d ) .  O n  t h e  r ada r  record (Fig.  4a)  t h e  

A t  
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turbulen t  f l uc tua t ions  caused by t h i s  l aye r  of shear  can be 

seen a s  the  heavy l aye r  of echoes between 250 and 375 m, 

Above 375 m t h e r e  w a s  an a rea  r e l a t i v e l y  free of echoes. 

H e r e  t h e  v e r t i c a l  temperature grad ien t  was weaker (Fig,  4b) 

as was t h e  wind shear  (Fig. 4d).  The l a y e r  of weak echoes 

from 450 t o  525 m marks t h e  turbulen t  mixing a t  t h e  boundary 

between t h e  cold a i r  and t h e  ambient air. 

Following t h e  leading head of cold a i r  downward 

v e r t i c a l  motion produced a broad th’ermal maximum centered 

a t  0305 CST (Fig. 4b ) ,  The temperature p r o f i l e  a t  0305 

cons is ted  of a less than dry ad iaba t i c  l apse  r a t e  from the  

su r face  t o  225 m, t h e  l e v e l  of minimum temperature;  a s t rong 

invers ion  from 225 to  365 m; and a n e u t r a l  l aye r  above 365 m. 

The l e v e l  of maximum wind speed was 260 m (Fig. 4d) .  The 

acous t i c  radar  record (Fig. 4a) revealed turbulen t  tempera- 

t u r e  f l u c t u a t i o n s  from t h e  surface t o  275 m; a l aye r  of s t rong  

echoes from 275 t o  325 m associated with t h e  s t rong wind shear  

and s t rong  vertical  grad ien t  of temperature i n  t h i s  l aye r ;  and 

a l a y e r  of weaker echoes from 325 t o  365 m, where t h e  shear  

and v e r t i c a l  g rad ien t  of temperature w e r e  s l i g h t l y  weaker 

than i n  t h e  275 t o  325 m layer .  

Af te r  0305 CST t h e  depth of t h e  cold a i r  and the  

he igh t  of t h e  wind speed maximum began t o  increase.  This 
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i n  turn caused an inc rease  i n  he igh t  of the region of s t rong  

wind shear  above the  wind speed maximum (Fig.  4d) and of 

s t rong v e r t i c a l  temperature g rad ien t  between 275 and 365 m 

(F ig .  4 b ) .  This increase  i n  he ight  w a s  s t r i k i n g l y  displayed 

on the  acous t ic  radar  record (Fig.  4a ) .  The  l a y e r  of s t rong  

shear  and s t rong  v e r t i c a l  temperature g rad ien t  i s  seen a s  a 

l aye r  of s t rong  echoes w h i c h  had separated from t h e  lower 

region of echoes and was gradual ly  increas ing  i n  he ight .  

By 0350 t h i s  l a y e r  w a s  between 350 and 450 m. T h e  he igh t s  

a r e  v e r i f i e d  by t h e  acous t i c  echoes (Fig.  4a), the  tempera- 

t u r e  d a t a  (Fig.  4 b ) ,  and t h e  wind speed a n a l y s i s  (Fig.  4 d ) .  

The echo-free region between 300 and 350 m,  a t  f irst  look, 

ind ica ted  a weakening of t he  wind shear  and v e r t i c a l  g rad ien t  

of temperature i n  t h i s  l aye r .  Closer  i n spec t ion  of t h i s  

region revealed an almost t o t a l  absence of wind shear  ac ross  

t h e  wind  speed maximum. The temperature p r o f i l e  of t h i s  

region, a weak invers ion ,  would enhance t h e  p o s s i b i l i t y  of 

turbulen t  f l u c t u a t i o n s  of temperature.  The absence of echoes 

i n  t h i s  region, and hence the absence of t u rbu len t  f l uc tua -  

t i o n s ,  implies  a lack cf v e r t i c a l  shear ac ross  t h e  wind speed 

maximum. The l e v e l  of maximum winds had become a l a y e r  Of 

maximum winds w i t h  an almost cons t an t  speed through t h e  l a y e r .  

The depth of t he  l aye r  of n e a r l y  cons t an t  wind speed i s  Seen 

I 
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as t h e  depth of t h e  echo-free region on t h e  radar  record 

(Fig. 4 a ) -  

Af te r  0400 CST t h e  l aye r  of maximum winds continued 

t o  increase  i n  he ight  (Fig,  6d) as  t h e  cold a i r  deepened. 

The l a y e r  a l s o  deepened a s  ind ica ted  by t h e  increased depth 

of t h e  echo-free region on t h e  radar  record (Fig,  6a ) .  A t  

0430 t h e  echo-free region extended from 350 t o  525 m, The 

l a y e r  of echoes from t h e  sur face  t o  350 m continued t o  show 

t h e  r e s u l t  of shear  b e l o w  the  layer  of maximum winds and t h e  

l apse  r a t e  less than dry ad iaba t ic .  These echoes had weak- 

ened somewhat, e s p e c i a l l y  those between 200 and 350 m, By 

0500 t h e  echoes had a l l  bu t  disappeared i n  t h e  200 t o  350 m 

l a y e r  (Fig. 6a ) .  The echoes w e r e  s t i l l  s t rong below 200 m 

and weaker echoes w e r e  seen a t  650 m. The l a t t e r  echoes 

w e r e  t h e  continued backsca t t e r  from t h e  tu rbu len t  mixing i n  

t h e  region of s t rong  shear  above t h e  l aye r  of maximum winds. 

There s e e m s  no apparent reason f o r  t h e  disappearance of t he  

echoes from t h e  200 t o  350 m layer .  The l apse  r a t e  i n  t h i s  

region was s t i l l  less than dry ad iaba t i c  (Fig. 6b) and t h e  

v e r t i c a l  wind shear  was unchanged (Fig. 6d) .  A poss ib le  

explanat ion is t h a t  t h e  ana lys i s  of the  wind speed d a t a  i s  

i n c o r r e c t .  T h i s  ana lys i s  was done without consul t ing t h e  

acous t i c  radar  record.  The wind shear  seen a t  0500 between 
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t h e  1 7 7 - m  and 266-m tower d a t a  c o l l e c t i o n  l e v e l s  may have 

been concentrated near  t h e  1 7 7 - m  l e v e l  with less shear  abovc: 

200 m. By 0530 it can be seen t h a t  t h e  wind shear  i n  t h e  

region had weakened (Fig.  6d) .  

The passage of t h e  e leva ted  head of co ld  a i r  a t  0147 

and the  s t rong  downward motion behind t h e  head c rea t ed  a 

g r a v i t y  wave upstream i n  t h e  co ld  a i r .  This wave motion was 

q u i t e  no tab le  i n  a l l  parameters from 0550 t o  0800. The wind 

d i r e c t  ion 

was s l i g h t  

speed (F ig  

wind speed 

Fig. 6c) showed some p e r i o d i c  change although i t  

compared t o  t h e  p e r i o d i c i t y  revealed by the  wind 

6d) and t h e  temperature d a t a  (Fig.  6b ) .  The 

maximum responded t o  t h i s  wave motion by o s c i l -  

l a t o r y  changes i n  he ight .  This produced a l t e r n a t i n g  reg ions  

of upward and downward v e r t i c a l  motion. V e r t i c a l  v e l o c i t i e s  

a s  high as  1.4 m sec" w e r e  recorded during t h i s  per iod .  

a l t e r n a t i n g  ver t ica l  motion i n  t u r n  caused a l t e r n a t i n g  reg ions  

of cold a i r  due t o  r i s i n g  motion and reg ions  of warm a i r  due 

t o  subsidence. This l a r g e  scale o s c i l l a t i o n  i n  all parameters 

is  q u i t e  obvious from t h e  analyses  and a d e t a i l e d  d i scuss ion  

i s  not needed. A t t e n t i o n  must be drawn, however, t o  t h e  

higher  frequency wave motion superimposed on t h e  long wave. 

T h i s  shor t  wave motion was most no tab le  i n  t h e  wind speed 

ana lys i s  (Fig.  6d) .  One can e a s i l y  see t h i s  between 0645 

The 

I 
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and 0655 a s  t h e  sho r t  wave trough coincided with the  long 

wave ridge.  Again between 0700 and 0718, t he  sho r t  wave 

motion was very apparent.  The wind d i r e c t i o n  a l s o  respond- 

ed t o  t h e  sho r t  wave motion (Fig.  6c).  The d i r e c t i o n  became 

q u i t e  e r r a t i c  a f t e r  0613, about the same t i m e  t h e  wind speed 

began t o  r e f l e c t  t h i s  motion. 

The acous t ic  radar  record also revealed both t h e  

long and shor t  wave motion (Fig.  6a). The long wave motion 

was q u i t e  obviously displayed as t h e  per iodic  height  changes 

of t h e  echo layer .  The he igh t  of t he  echo l aye r  was grad- 

u a l l y  increas ing  during t h e  per iod from 0550 t o  0800 b u t  t h e  

wave motion can be seen superimposed on t h i s  r i s i n g  t rend.  

The per iod  was on the  order  of one hour,  t h e  same noted i n  

t h e  analyses  of t h e  tower da ta ,  T h e  sho r t  wave motion i s  

c l e a r l y  seen, e spec ia l ly  between 0645 and 07108 as o s c i l l a -  

t i o n s  wi th in  t h e  l a y e r  of echoes. N o  more d iscuss ion  of t he  

radar  record is needed here  save the cause of t h e  echoes. 

A t  0545, about 30 min a f t e r  sunr i se ,  t h e  su r face  

began t o  warm. This warming resu l ted  i n  a l aye r  of a i r  a t  

t h e  su r face  i n  which t h e  lapse  r a t e  w a s  dry ad iaba t ic .  A s  

t h i s  l a y e r  deepened t h e  r e l a t i v e l y  echo-free region a t  t h e  

s u r f a c e  deepened (Fig. 6a ) .  The cause of t h e  l aye r  of echoes 

seen on t h e  record may be bes t  seen by s e l e c t i n g  a few po in t s  
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i n  t i m e  and examining t h e  d a t a  a t  t hese  poin ts .  

A t  0620 t h e  l a y e r  of echoes appeared between 100 a n d  

2 C O  m (Fig.  6 a ) .  The temperature p r o f i l e  f o r  0620 (Fig.  7 )  

shews t h e  1a-c- Y U b  rate was n e a r l y  drjj- ad iaba t i c  frsm t h e  sux- 

face t o  about 100 m. Above, i t  w a s  less w i t h  an invers ion  

between 180 and 350 m. On t h e  wind speed ana lys i s  (Fig.  6d) 

one can see t h e  s t ronge r  wind shear  from t h e  su r face  t o  200 m. 

The echoes between 100 and 200 m w e r e  caused by tu rbu len t  

mixing of t h e  a i r  i n  t h e  region where t h e  lapse rate w a s  

less than d r y  ad iaba t i c .  

A t  0646 t h e  l apse  r a t e  w a s  d ry  a d i a b a t i c  from t h e  

sur face  t o  310 m (Fig.  7 ) .  This  w a s  caused not  on ly  by t h e  

s u n ' s  warming a t  t h e  su r face  b u t  a l s o  by t h e  formation of 

t h e  co ld  a i r  pocket cen tered  a t  310 m (Fig.  6b ) .  The echo- 

i r e e  area had deepened t o  about 250 m (Fig.  6 a ) .  The echoes 

w e r e  a l so  s t ronge r  than those  seen a t  0620. This  increased  

i n t e n s i t y  w a s  caused by t h e  sharp  v e r t i c a l  g r a d i e n t  of t e m -  

pe ra tu re  above the pocket of  co ld  a i r .  By 0725 t h e  bottom 

of t h e  l a y e r  of echoes w a s  l o w e r  as the warming by subsidence 

above 150 m rendered t h e  lapse ra te  above t h a t  he igh t  less 

than dry  ad iaba t i c  (Fig. 7 ) .  The echoes became much weaker 

here  as t h e r e  no longer  e x i s t e d  any reg ion  of s t rong  v e r t i -  

ca l  temperature g r a d i e n t  (Fig.  6a ) .  
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A t  0745 a r epea t  of t h e  0646 condi t ions  can be seen. 

.le wind shear  i n  t h e  region of the  s t rong  v e r t i c a l  tempera- 

t u r e  g rad ien t  above t h e  co ld  a i r  pocket was not  a s  s t rong  as 

seen a t  0646, bu t  t h e  temperature g rad ien t  w a s  s t rong and 

t h e  r e f l e c t e d  energy r e s u l t e d  i n  another region of s t ronge r  

echoes. 

C a s e  I1 

A t  1700 CST, 4 August 1972,  a co ld  f r o n t ,  o r i en ted  

northwest t o  southeas t  and moving southward a t  8-10 k t ,  l a y  

ac ross  Oklahoma (Fig,  8). South of t h e  f r o n t  c e i l i n g s  ranged 

from 8-10000 f t  broken i n  southwestern Oklahoma t o  25000 f t  

broken i n  t h e  southeas te rn  and southcent ra l  s ec t ions  of t h e  

s ta te ,  There w e r e  s o m e  widely s c a t t e r e d  r a i n  showers i n  

c e n t r a l  Oklahoma. Winds south of t h e  f r o n t  w e r e  from t h e  

south a t  5-10 k t  except i n  t h e  v i c i n i t y  of the  showers. 

Immediately behind t h e  f r o n t  winds w e r e  from t h e  northwest 

bu t  s h i f t i n g  gradual ly  t o  t h e  nor theas t  about an hour a f t e r  

f r o n t a l  passage. 

c e n t e r  l oca t ed  over northern I l l i n o i s  w a s  dominating t h e  

flow behind t h e  f r o n t .  Cei l ings  behind t h e  f r o n t  i n  Oklahoma 

w e r e  25000 f t  broken. Fur ther  north i n  Kansas, low s t r a t u s ,  

wi th  c e i l i n g s  a s  l o w  a s  500 f t  overcas t ,  fog, and d r i z z l e  

w e r e  common. There w e r e  r a i n  showers i n  southwestern Missouri ,  

C i r cu la t ion  around a su r face  high p res su re  
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and heavy r a i n  and fog i n  northwestern Arkansas. A t  the  

850-mb l e v e l  (Fig. 9 )  winds from t h e  south w e r e  bringing 

w a r m  moist a i r  i n t o  t h e  Oklahoma area. 

A t  1700 a r a i n  shower w a s  i n  progress  over t h e  acou- 

s t i c  radar  s i te .  The e f f e c t  of r a i n  f a l l i n g  on t h e  radar  

antenna can be seen i n  t h e  acous t i c  radar  d a t a  c o l l e c t e d  

from 1700 t o  1735 (Fig. l o a ) .  The r a i n  began a t  1700 and 

t h e  a i r  cooled r ap id ly  a t  a l l  l eve l s  during t h e  r a i n  (Fig.  

l o b ) ,  and the  wind specd w a s  q u i t e  g u s t y  ( F i g .  10d) .  From 

t h e  radar record it can be seen t h a t  the  r a i n  was a l te r -  

na t e ly  heavy then l i g h t  and ended a t  1735. The a i r  warmed 

and the wind speed dropped t o  almost calm a t  t h e  su r face  

a f t e r  t h e  shower ended. 

The cold f r o n t  passed t h e  WKY t o w e r  a t  1806 CST. 

The leading edge of t h e  co ld  a i r  m a s s  w a s  almost v e r t i c a l .  

This w a s  q u i t e  dramat ica l ly  displayed by t h e  acous t i c  radar  

(Fig.  l o a ) .  The depth of t h e  leading edge w a s  about 525 m. 

The cold a i r  boundary i s  shown by t h e  dark echoes r e s u l t i n g  

from the turbulen t  mixing between t h e  co ld  a i r  and t h e  warmer 

a m b i e n t  a i r .  The temperature drop a s soc ia t ed  with t h e  f r o n t  

w a s  sharpest  a t  350 m and q u i t e  weak a t  t h e  su r face  (Fig.  

10b) .  This was ind ica t ive  of t u r b u l e n t  mixing a t  t h e  sur-  

face which had lessened t h e  temperature  g r a d i e n t  through t h e  



33 

f ron t .  This mixing w a s  probably the  cause of t h e  echoes seen 

near t h e  su r face  f o r  s eve ra l  minutes following t h e  leading 

edge of t h e  f r o n t  (Fig. l o a ) .  The boundary of t h e  pre- 

viously discussed po r t ion  of warm a i r  being c a r r i e d  along 

by t h e  f r o n t  may be seen as t h e  l i g h t  echoes a t  t he  sur face  

between 1805 and 1810. 

The wind s h i f t  assoc ia ted  with t h e  f r o n t  a r r ived  a't 

t h e  sur face  seve ra l  minutes before  t h e  temperature decrease 

occurred (Fig. 1 O c ) .  A wind speed minimum accompanied the  

wind s h i f t  at t h e  sur face  (Fig. loa). A t  t h e  upper l e v e l s  

t h e  w i n d  s h i f t ,  wind speed minimum, and temperature decrease 

a r r ived  almost simultaneously.  Immediately behind t h e  pass- 

age of t h e  co ld  a i r  a wind speed maximum occurred a t  a l l  

l e v e l s .  

Upward v e r t i c a l  v e l o c i t i e s  on t h e  order  of 0.7 t o  

1.2 m sec'l w e r e  recorded a t  444 m p r i o r  t o  t h e  a r r i v a l  of 

t h e  leading head of co ld  a i r .  Behind t h e  leading head down- 

ward v e r t i c a l  motion occurred with v e l o c i t i e s  as high as 

1.7 m sec-l recorded. The subsidence behind t h e  leading 

I head r e s u l t e d  i n  a temperature increase a t  a l l  l eve ls .  This 

thermal maximum w a s  centered a t  1816 (Fig. l o b ) .  The acous t ic  

r ada r  r e f l e c t e d  t h i s  downward motion a s  a decrease i n  t h e  

he igh t  of t h e  echo l a y e r  a t  1816 (Fig. l o a ) .  As t he  cold 
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a i r  deepened again,  upward motion was again noted a t  t h e  

444-m l eve l .  

The second head of cold a i r  was equal i n  depth t o  the  f i r s t  

and following i t s  passage the  echo l aye r  decreased again. 

The v e l o c i t i e s  ranged from 0.4 t o  1.4 m sec-’. 

A t  1850 a second surge of cold a i r  a r r ived  with the  

m i n i m u m  temperature core  a t  180 m (Fig.  l o b ) .  This was 

accompanied by a s l i g h t  increase  i n  wind speed (F ig .  l oa ) .  

T h e  boundary of t he  co lder  a i r  can e a s i l y  be seen on the  

radar  record a s  an increase  i n  the  height  of the  echo l aye r  

j u s t  p r i o r  t o  1900 (Fig.  l o a ) .  The depth of t he  co lder  a i r  

was about 375 m. The depth was v e r i f i e d  by the  tower tem- 

pera ture  da t a  a s  t he  3 5 5 - m  l e v e l  sensor recorded a s l i g h t  

temperature decrease a t  t h i s  time while t he  temperature a t  

444 m remained unchanged. Behind the  surge of co ld  a i r ,  

downward motion r e su l t ed  i n  warming (Fig.  l o b ) .  Downward 

v e r t i c a l  v e l o c i t i e s  as  high a s  2.0 m sec’l were recorded a t  

1 7 7  m following the  passage of t he  deeper mass of co ld  a i r .  

T h e  hor izonta l  wind speed decreased behind t h e  cold surge 

( F i g .  10d) .  

Following t h e  surge of cold a i r ,  t he  co ld  a i r  be- 

came qu i t e  shallow and very near ly  l o s t  i t s  i d e n t i t y  on t h e  

acoust ic  record (Fig.  l o a ) .  The co ld  a i r  was being mixed 

with warmer ambient a i r  t o  t h e  po in t  t h a t  by 1930 only a 
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very t h i n  l a y e r  of cold a i r  remained on the  surface.  Above 

t h i s  ex i s t ed  a deep boundary of mixed a i r .  Th i s  continucd 

u n t i l  t h e  a r r i v a l  of another surge of co ld  a i r  a t  approxi- 

mately 2006, 

This t h i r d  surge of co ld  a i r  was, l i k e  t h e  second, 

most pronounced a t  t h e  177-m l e v e l  (Fig.  l o b ) .  B u t ,  unl ike 

t h e  second, it was noted a t  a l l  l eve l s  of the  tower a s  t he  

depth of t h i s  surge w a s  about 500 m. The co ld  a i r  w a s  accom- 

panied by an increase  i n  wind speed a t  a l l  l e v e l s  (Fig. 10d).  

The increase  was m o s t  notable  i n  the l aye r  from 100 t o  230 m, 

corresponding roughly t o  the  layer  of most pronounced t e m -  

pe ra tu re  change. The speed increase was l e a s t  a t  t he  su r face  

and t h e  top  of t o w e r ,  The wind s h i f t  was most pronounced a t  

t h e  444-m l e v e l  however (Fig.  1Oc). The wind a t  and near 

t h e  su r face  had been gradual ly  s h i f t i n g  toward t h e  e a s t  fo l -  

lowing t h e  i n i t i a l  r ap id  s h i f t  accompanying t h e  f ron t .  A t  

t h e  upper l e v e l s  of t h e  tower the winds had s h i f t e d  back t o  

t h e  southwest following t h e  passage of the  deep leading head 

of co ld  a i r ,  Therefore,  t he  a r r i v a l  of another deep l a y e r  

of a i r  caused a more pronounced wind s h i f t  a t  355 and 444 m. 

The a r r i v a l  of t he  t h i r d  surge of cold a i r  was noted 

on t h e  radar  record a t  2006 (Fig. l o a ) ,  The boundary of 

mixing co ld  and warmer ambient a i r  extended t o  about 500 m, 
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This surge had an upraised leading nose followed by a deeper, 

colder  head. This i s  seen very c l e a r l y  i n  t h e  temperature 

ana lys i s  (Fig. lob) as w e l l  as t h e  acous t ic  radar  record.  

I t ' s  appearance is somewhat siinilar t o  t h e  leading edge of 

the co ld  i n t r u s i o n  discussed i n  C a s e  I of t h i s  s ec t ion .  

Turbulent mixing w a s  again seen near  t h e  su r face  below t h e  

leading nose of co ld  a i r .  

Following t h e  l a s t  surge of co ld  a i r ,  t h e  co ld  a i r  

again became shallow and soon l o s t  i t s  i d e n t i t y  as t h e  w a r m e r  

a i r  above mixed with it. Evidence of mixing a t  t h e  su r face  

lasted u n t i l  a few hours a f t e r  sunr i se .  



CHAPTER V 

NOCTURNAL LOW-LEVEL W I N D  MAXIMUM 

The vertical profile of horizontal wind speed some- 

times shows a relatively sharp peak or "nose" within the 

lowest 1500 m of the atmosphere. This thin layer of maxi- 

mum wind speed is generally known as the "low-level jet". 

Wind speeds in the jet are often twice those found a few 

hundred meters below or above. The low-level jet has been 

observed in all parts of the United States, in all seasons, 

and at all hours of both day and night (Banner, 1968)- How- 

ever, the low-level wind maxima achieve greatest development 

and occur most frequently in the central and southern plains 

areas of the United States during the summertime between mid- 

night and sunrise, The most frequently observed direction 

is southerly. 

The low-level jet is of great interest to meteorolo- 

gists because of the indirect evidence which may be inferred 

about turbulent mass transport in the lower atmosphere and 

because of the apparent relationship between the jet and the 

high frequency of nocturnal thunderstorms in the plains area 

37 
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of  t h e  United S ta t e s .  The phenomenon i s  a l s o  of p r a c t i c a l  

i n t e r e s t .  The low-level j e t  has  proven t o  be very hazardous 

t o  a i r c r a f t  landing operat ions.  The s t rong  v e r t i c a l  shear  

helm: t hc  l i iyer of maximum wind speed r e s u l t s  i n  a rap id  l o s s  

of a i rspeed f o r  a descending a i r c r a f t .  

dangerous f o r  j e t  a i r c r a f t  which normally land a t  n e a r - s t a l l  

speeds. The low-level j e t  i s  a l s o  known a s  a f u e l  or  t i m e  

saver  f o r  t h e  p i l o t  of t h e  s m a l l  p r i v a t e  a i rp l ane .  One such 

p i l o t  reported f ly ing  from New Orleans t o  Cleveland v i a  

J o l i e t ,  a d i s t ance  of 1180 m i ,  i n  a p lane  with a range of 

oiily 1050 m i  (Durosko, 1962). 

This can be e s p e c i a l l y  

There have been s e v e r a l  t h e o r i e s  proposed f o r  t h e  

formation of t h e  low-level wind maximum. Blackadar (1957) 

saggested t h a t  t h e  boundary l a y e r  winds, which include t h e  

low-level j e t ,  undergo a d i u r n a l  o s c i l l a t i o n  s imi l a r  t o  t h e  

t h e o r e t i c a l  i n e r t i a l  o s c i l l a t i o n  (see H e s s ,  1959, 170-172). 

During t h e  day t h e  real  wind is  a balance between t h e  pres- 

s u r e  grad ien t ,  C o r i o l i s ,  and f r i c t i o n a l  forces .  Near sunse t  

a r ad ia t ion  invers ion  forms a t  t h e  sur face .  The a i r  above 

t h e  inversion l aye r ,  no longer  being mixed wi th  t h e  a i r  i n  

t h e  inversion layer ,  i s  e s s e n t i a l l y  decoupled from t h e  f r ic-  

t i o n a l  force  and i s  allowed t o  accelerate. I t  i s  acce le ra t ed  

by  the r o t a t i o n  of t h e  ageostrophic  vec to r  ( V a  i n  Fig. l l a ) ,  
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the vector difference between the geostrophic wind (Vg in 

Fig. lla) and the real wind (Vr in Fig. lla), The maximum 

boundary-layer speed during the night is related to the mag- 

nitude of the ageostrophic vector at the time of decoupling. 

At its maximum the wind speed would be equal to the geo- 

strophic wind speed plus the magnitude of the ageostrophic 

vector. The period for one complete oscillation is one-half 

pendulum day and the wind speed reaches its maximum about 6 

pendulum hours after sunset. Since the magnitude and direc- 

tion of the real wind approach those of the geostrophic wind 

as the height increases, the largest ageostrophic vector, and 

hence, the greatest acceleration, would occur at or just 

above the top of the radiation inversion (Fig. llb). It is 

at this level the low-level jet would appear. 

Another prominent theory, proposed by Wexler (19611, 

involves the turning northward along the Central American 

mountains of tradewind air that enters the Gulf of Mexico. 

Wexler proposed a two-layer model, the upper layer station- 

ary, the lower flowing northward below 2 km. This air moving 

northward provides the volume used by the high-speed low-level 

jet. The principle of the jet is explained by the conserva- 

tion of potential vorticity. 

columns moving northward and if D, column thickness, remains 

If (f + C)/D is constant for air 
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constant ,  then as f ,  t he  C o r i o l i s  parameter, increases  with 

increasing l a t i t u d e ,  t h e  columns of a i r  m u s t  take on increas-  

ing an t icyc lonic  r e l a t i v e  v o r t i c i t y ,  C. I f  t h i s  i s  converted 

t o  an t icyc lonic  shear ,  then a high-speed flow must develop on 

t h e  western boundary of t h e  north-moving layer .  F r i c t i o n  

along t h e  high p l a i n s  and Rocky Mountains would cause s t rong  

shear of t h e  oppos i te  sense on t h e  western s i d e  of t he  f l o w ,  

r e s u l t i n g  i n  t h e  appearance of a t r u e  j e t  i n  t h e  ho r i zon ta l .  

F r i c t ion  a t  t h e  su r face  would cause v e r t i c a l  wind shear  i n  

t h e  lower layer .  This combined with t h e  s t a t i o n a r y  l a y e r  

above 2 km would g ive  t h e  flow a j e t - l i k e  appearance i n  t h e  

v e r t i c a l .  A s  r a d i a t i o n  a l t e r n a t e s  t o  create and des t roy  t h e  

surface nocturnal  inversion,  t h e  v e r t i c a l  f r i c t i o n a l  stresses 

would undergo a s t rong  d i u r n a l  v a r i a t i o n ,  and so change t h e  

v e r t i c a l  p r o f i l e  of t h e  j e t .  

There are s t rong  and weak p o i n t s  i n  both of t h e  

theor ies  descr ibed above. Wexler 's  theory implies  the j e t  

would be i n  ac t ion  both day and n igh t ,  with some v a r i a t i o n  

caused by sur face  f r i c t i o n  during t h e  day, and t h a t  t h e  low- 

l eve l  w i n d  maxima have a j e t - l i k e  appearance i n  t h e  hor i -  

zontal  a s  w e l l  as t h e  v e r t i c a l .  Hoecker (1963) found t h e  

j e t  does o f t e n  p e r s i s t  during t h e  day and does e x h i b i t  a 

wind speed maximum i n  t h e  h o r i z o n t a l .  Wexler's theory,  
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however, pu t s  a l i m i t  on t h e  d i r e c t i o n  of t h e  jet ,  souther ly ,  

and c a l l s  t h e  Rocky Mountains t h e  wes te rn  boundazy of occur- 

rence, Bonner (1968) showed t h a t  souther ly  is  t h e  host  

common, but  c l e a r l y  not  t he  only d i r e c t i o n  from which t h e  

j e t  has been observed. Studies  made by Rider and Armendariz 

(1966, 1971) i n d i c a t e  t h a t  t h e  low-level jet  occurs w e s t  of 

t h e  Rockies. Blackadar 's  theory implies t h a t  t h e  formation 

of t h e  jet  depends on t h e  formation of t h e  nocturnal  radia- 

t i o n  inversion. 

when t h e  temperature p r o f i l e  is dry ad iaba t i c  (Hoecker, 1963) 

and t h a t  t h e  nocturnal  inversion may occur without the  for-  

mation of t h e  low-level jet .  Blackadar 's  theory i s  s t rength-  

ened by t h e  f a c t  t h a t  most occurrences of t h e  low-level jet  

a r e  i n  t h e  n ight  t i m e  hours and a r e  accompanied by a sur face  

r a d i a t i o n  invers ion  with the  top of t h e  inversion below o r  

a t  t h e  l e v e l  of maximum wind speed (Bonner, 1968; Rider and 

It has been found*that t h e  j e t  can occur 

Armendariz, 1971). 

It is not t h e  purpose of t h i s  research t o  examine 

e i t h e r  t h e  formation of the  low-level j e t  o r  t he  m e r i t  of 

any theory on i t s  formation, but  r a t h e r  t o  inves t iga t e  t h e  

r e l a t i o n s h i p  of t he  je t  t o  the  nocturnal inversion i n  t h e  

l i g h t  of conclusions reached by Blackadar (1957). In  t h e  

p re sen ta t ion  of h i s  theory, he d e a l t  a t  s o m e  length on t h e  
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r e l a t i o n s h i p  of t h e  two phenomena. Above t h e  he ight  of about 

one m e t e r ,  t h e  rate of nocturnal  cooling i s  too  l a r g e  t o  be 

accounted f o r  by r a d i a t i o n a l  o r  conductive f luxes .  I t  i s  

the re fo re  evident  t h a t  t u r b u l e n t  t r a n s f e r  i s  t h e  ch ief  

con t ro l  on t h e  rate of upward propagation of t h e  invers ion  

surface.  The cause of t h e  turbulence l i e s  i n  the  s t rong  

wind shear  which develops wi th in  t h e  invers ion  and which 

suppl ies  t h e  tu rbu len t  energy t o  overcome s t a b i l i t y .  When 

s t a b i l i t y  is overcome t h e  invers ion  may be destroyed, deepen 

i n  a chao t i c  fashion, o r  grow slowly and o rde r ly  upward. 

The cha rac t e r  of t h e  wind p r o f i l e  w i l l  determine which a l t e r -  

na t ive  w i l l  occur. 

Blackadar concluded t h a t  i f  t h e  wind speed maximum 

i s  some d i s t ance  above t h e  top  of t h e  invers ion ,  t h e  inver-  

s ion w i l l  e i t h e r  be destroyed o r  grow upward c h a o t i c a l l y .  

However, while t he  wind shear  i s  probably s t rong  enough t o  

allow a cont inua l  genera t ion  of turbulence,  t h e  presence of 

t h e  wind speed maximum a t  t h e  top  of t h e  invers ion  a s su res  

tha t  t h e  generat ion of tu rbulence  i s  kept  under con t ro l .  

The inversion w i l l  grow upward slowly and o rde r ly ,  with t h e  

he ight  of t h e  wind speed maximum inc reas ing  slowly t o  remain 

coincident  with t h e  top  of t h e  deepening invers ion .  The 

ex is tence  of a j e t - l i k e  p r o f i l e  w i th  a wind maximum a t  t h e  

1 
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t o p  of t he  invers ion  is  a s t a b l e  conf igura t ion  according t o  

Blackadar. 

I n  a s tudy of low-level je t  occurrences over White 

Sands M i s s i l e  Range, Rider and Armendariz (1971)  found t h a t  

t h e  he ight  above ground of t h e  wind speed maxima and t h e  

magnitude of t h e  wind speed are erratic or  f l u c t u a t e  with 

t i m e  when t h e  nose of t h e  speed p r o f i l e  is w e l l  above t h e  

temperature inversion.  A i r  Force p i l o t s  f l y i n g  low-level 

missions have o f t e n  reported s t r o n g  turbulence near  a low- 

l e v e l  j e t ,  while p i lo t s  f l y i n g  t h e  same route a s h o r t  t i m e  

la ter  r e p o r t  no turbulence but  t h e  continued ex i s t ence  of 

t h e  s t rong  winds (McFarland, 1 9 7 3 ) .  These f ind ings  i n d i c a t e  

t h a t  t h e  occurrence of t h e  j e t  w e l l  above t h e  top  of t h e  

inve r s ion  i s  not a stable conf igura t ion  and t h a t  t h e  j e t  

occurs ,  a t  times, without t h e  turbulence suggested by i t s  

s t rong  wind shear .  These f indings  tend t o  add s o m e  support  

t o  Blackadar 's  conclusion t h a t  t h e  coincidence of t h e  wind 

speed maximum and t h e  t o p  of t h e  inversion is  stable and t h e  

gene ra t ion  of turbulence is  under cont ro l .  It is  with t h i s  

conclusion i n  mind t h a t  t h i s  ca se  study i s  presented. 

The synopt ic  s i t u a t i o n  f o r  t h e  n igh t  of 31  July-  

1 August 1972 w a s  q u i t e  favorable  f o r  t he  formation of t h e  

low-level je t .  T h e  su r f ace  ana lys i s  f o r  0000 CST 1 August 



44 

(Fig. 12a) shows sou theas t e r ly  winds preva i led  over  Oklahoma 

around a low p res su re  center i n  southwestern New Mexico, A 

similar p a t t e r n  e x i s t e d  a t  t h e  850-mb l e v e l  6 h r s  ear l ier  

(Fig.  12b). Sky condi t ions  over t h e  s t a t e  ranbed from clear 

t o  t h i n  s c a t t e r e d  c i r r u s .  

About 40 m i n  before  sunse t ,  which w a s  1935 CST, a 

weak invers ion  formed i n  t h e  l o w e r  50 m a t  t h e  radar  s i t e .  

This occurrence i s  q u i t e  common i n  c e n t r a l  Oklahoma (Goff 

and Hudson, 1972). Af t e r  sunse t  t h e  invers ion  i n t e n s i f i e d  

rap id ly  and began t o  deepen. By 2200 CST t h e  invers ion  ex- 

tended t o  about 200 m, s t ronges t  between t h e  su r face  and 

about 50 m (Fig. 13b) .  The wind speed ana lys i s  f o r  2200 

(Fig. 13c) shows t h a t  s t r o n g  v e r t i c a l  shear  e x i s t e d  i n  t h e  

inversion layer .  Turbulent mixing caused by t h e  shear  w a s  

revealed by t h e  acous t i c  r ada r  (Fig.  13a ) .  The s t rong  echoes 

ind ica t e  t h a t  t u rbu len t  mixing e x i s t e d  throughout t h e  inver-  

s ion layer .  

By 2330 t h e  rap id  cool ing  a t  t h e  su r face  and t h e  

r e s u l t a n t  shrinkage of t h e  lower 50-75'm of t h e  atmosphere 

had produced subsidence w a r m i n g  a t  about 75 m. This  r e s u l t -  

ed i n  a double invers ion  temperature p r o f i l e  from t h e  su r face  

to 220 in. The depth of t h e  inve r s ion  l a y e r  had g radua l ly  

increased between 2200 and 2330 and w a s  cont inuing  t o  do SO. 

1 

, 
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! T h i s  was most e a s i l y  seen on t h e  acoust ic  radar  record a s  an 

increase  i n  t he  depth of t he  echo layer  (Fig.  13a) .  By 2330 

the  wind speed had begun t o  increase  with a d e f i n i t e  speed 

maximum a t  about 290 m (Fig. 13c). Fig. 14 shows c l e a r l y  

t h a t  t he  wind speed maximum w a s  located about 70 m above t h e  

top  of t h e  inversion l aye r ,  

Shor t ly  a f t e r  0000 CST a rapid increase  i n  t he  depth 
t 

of the  echo l aye r  and an equal ly  rapid decrease i n  echo i n t e n -  

s i t y  was seen i n  the  acous t ic  radar  da t a  (Fig.  13a) .  The 

temperature ana lys i s  (Fig. 13b) reveals  t h a t  t h e  invers ion  

had suddenly deepened up t o  t h e  l e v e l  of t h e  maximum wind 

speed (Fig,  13c) .  The temperature a t  t h e  l e v e l  of m a x i m u m  

wind speed remained r e l a t i v e l y  unchanged and it  was t h i s  

temperature which became the  top of the  inversion a f t e r  t he  
b 

I 
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maximum became s t rong  enough t o  overcome the s t a b i l i t y  of the 

inversion.  

j e t  and destroyed t h e  invers ion  a t  220 m. 

i n  t he  temperature p r o f i l e  can be seen i n  Fig.  15. 

The r e s u l t i n g  turbulence mixed the  a i r  b e l o w  the  

The r ap id  change 

Following t h e  per iod of t u rbu len t  mixing, the t o p  of 

the  invers ion  was a t  t h e  same l e v e l  a s  t h e  maximum wind speed. 

The speed and temperature p r o f i l e s  f o r  0032 a r e  shown i n  Fig.  

16 .  T h i s  conf igura t ion  i s  stable according t o  Blackadar (1957) 

and t h e  generat ion of turbulence should be under con t ro l .  

Although t h e  shear  below t h e  wind maximum remained s t rong  

(Fig. 1 3 c ) ,  t he  reduct ion i n  t h e  i n t e n s i t y  of t he  acous t ic  

radar echoes a f t e r  0005 (Fig.  13a) may i n d i c a t e  t h a t  turbu- 

l e n t  mixing d id  decrease following t h e  r e l o c a t i o n  of the t o p  

of the invers ion  so t h a t  i t  became coinc ident  with t h e  l e v e l  

of maximum wind speed. 

There a r e  two ques t ions  which m u s t  be answered a t  

t h i s  po in t .  F i r s t ,  does t h i s  observed wind maximum m e e t  t h e  

c r i t e r i a  for  the low-level j e t  set f o r t h  by Blackadar? H e  

r e f e r r e d  to a s i g n i f i c a n t  wind maximum a s  one i n  which the 

w i n d  speed reaches a maximum wi th in  the f i r s t  1.5 k m  above 

the ground and then decreases  by a t  l e a s t  2.5 m sec t o  t h e  

n e x t  higher  minimum. The h e i g h t  of the wind maximum i n  t h i s  

study was about 290 m, w e l l  w i t h i n  t h e  f i r s t  1.5 k m  of t h e  

-1 
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lower atmosphere. The magnitude a t  t h e  maximum l e v e l  a t  2330 

was about 15.5 m sec-'. 

speed was 12.4 m sec-l a t  2330. 

w a s  a t  t h e  top  of the  tower, t he  wind maximum did  m e e t  t h e  

c r i t e r i o n .  It i s  l i k e l y  t h a t  t h e  next h igher  m i n i m u m  was 

much h igher  and t h e  wind speed much less than 12.4 m sec'l 

a s  t he  wind speed a t  t h e  850-mb l e v e l  was on t h e  order  of 

6-8 m sec-l. This wind maximum a l s o  m e t  t h e  c r i t e r i a  set 

by Bonner (1968) t o  be c l a s s i f i e d  a s  a low-level jet. 

A t  t h e  444-m l e v e l  of t h e  tower t h e  

If t h e  next higher  minimum 

The second quest ion involves the  change i n  i n t e n s i t y  

of t h e  acous t ic  radar  echoes which occurred with t h e  change 

i n  t h e  depth of t h e  inversion. Could some c h a r a c t e r i s t i c  of 

t h e  radar  cause such a change? There a r e  two p o s s i b i l i t i e s  

here.  If an acous t ic  wave i s  t ransmit ted v e r t i c a l l y  i n t o  a 

l aye r  i n  which t h e  wind speed i s  increas ing  i n  he ight ,  t he  

path of t h e  wave w i l l  be curved. As t h e  wave t rave led  higher ,  

s c a t t e r i n g  volumes, which could r e s u l t  i n  backscat tered 

energy, would be f u r t h e r  removed hor i zon ta l ly  from t h e  ver- 

t i c a l  "aim" of t h e  t ransmi t te r .  Likewise t h e  energy back- 

s c a t t e r e d  would r e t u r n  t o  the  rece iver  i n  a curved path. A 

change i n  t h e  wind p r o f i l e ,  i n  speed or d i r e c t i o n ,  over t he  

radar  s i t e  could r e s u l t  i n  a change i n  echo i n t e n s i t y  a s  i t  

would phys ica l ly  change t h e  region i n t o  which t h e  acous t ic  
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energy is being t ransmi t ted .  However, t h i s  change would 

have t o  be r a t h e r  abrupt  t o  cause an abrupt change i n  t h e  

radar  data .  A s  can be seen i n  Fig. 13c, t h e r e  was no abrupt  

chanqe i n  wind speed. The wind d i r e c t i o n  was cons tan t  a t  

a l l  l e v e l s  of t h e  t o w e r  throughout t h e  per iod.  The second 

p o s s i b i l i t y  i s  a change i n  the  s c a l e  of tu rbu len t  mixing. 

The acous t ic  radar  i s  most s e n s i t i v e  t o  tu rbu len t  temperature 

f luc tua t ions  on the  o rde r  of 10  cm.  The breakdown of t h e  

invers ion  a t  220  m may have caused t h e  s c a l e  of f l u c t u a t i o n s  

t o  change to  a dimension t o  which the  radar  i s  not a s  sen- 

s i t i v e .  Hence, a change i n  the  qcho i n t e n s i t y  would have 

occurred. A s  can  be seen  i n  Fig. 15 ,  t h e  breakdown of the  

inversion d i d  not  a f f e c t  t h e  temperature p r o f i l e  t o  any 

l a r g e  degree below 150 m. B u t  t he  i n t e n s i t y  of t h e  r ada r  

echoes d id  change i n  t h i s  region (Fig.  13a ) .  This  would 

ind ica t e  t h a t  t h i s  c h a r a c t e r i s t i c  of t h e  radar  probably 

had l i t t l e  t o  do with t h e  observed change of i n t e n s i t y .  

I f  i t  can now be assumed t h a t  t h e  decrease i n  echo 

i n t e n s i t y  was caused by a decrease  i n  t u r b u l e n t  mixing below 

t h e  j e t ,  t h i s  low-level j e t - inve r s ion  occurrence f i t s  q u i t e  

w e l l  Blackadar 's  conclusion. The inve r s ion  began t o  form 

near s u n s e t .  Severa l  hours l a t e r  t h e  j e t  formed above t h e  

top Of t h e  inversion.  Strong wind shear  caused tu rbu len t  
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f mixing in the inversion layer. The heavy layer of echoes on 

the acoustic radar record (Fig. 13a) gave some measure of 

t that turbulent mixing. Then came the sudden increase in the 

height of the inversion layer up to the level of the jet. 

The jet speed continued to increase and the shear below the 

jet became stronger. But the turbulent mixing below the jet 

I 

I decreased, as revealed by the change in echo intensity on 

the radar record. 

The top of the inversion add the jet remained at the 

same height, 290 m, until about 0315 CST, then, remaining 

coincident, began a slow increase in height to 450 m by sun- 

rise. After sunrise the jet-inversion structure broke up. 

To close out this case study, it should be of inter- 

est to compare the speed and direction of the observed jet 

with those of the jet predicted by Blackadar's inertial 

oscillation. To find the predicted wind, the real wind 

and the geostrophic wind are needed at the time of the de- 

coupling described earlier. The surface inversion formed 

at 1855 CST; sunset occurred at 1935. The average of these 

times, 1915, was taken as an estimated time for decoupling. 

The surface geostrophic wind speed, 11.5 m sec-l, was com- 

puted from 1900 CST surface observations. The direction, 

178O, was estimated from the surface analysis for 1900. 

I 

i 
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1 The r e a l  wind speed, 8.5 m sec- , and d i r e c t i o n ,  1 5 1 ° ,  w e r e  

the  averages of a 10-min per iod of da t a ,  centered a t  1915, 

from t h e  upper t h r e e  l e v e l s  of t h e  tower, 266 355, and 

444 rn. These t h r e e  l e v e l s  w e r e  ckcseri because the  j e t  was 

observed between 290 and 450 m, The r e a l  and geostrophic  

winds ( V r  and Vs, r e spec t ive ly ,  i n  Fig. 1 7 )  w e r e  p l o t t e d  and 

the  ageostrophic vec tor  (Va i n  Fig. 1 7 )  was determined. Fig.  

1 7  shows the  v a l i d  t i m e ,  d i r e c t i o n ,  and speed of t h e  winds 

pred ic ted  by t h e  i n e r t i a l  o s c i l l a t i o n .  Note t h a t  t h e  maxi- 

mum wind was predic ted  t o  occur a t  0308 CST, from 1 7 8 O ,  and 

with a speed of 16.0 m sec-l. 

t i m e s  may be found by i n t e r p o l a t i n g  along t h e  c i rc le  t o  t h e  

d i s i r e d  t i m e ,  measuring t h e  length  f r o m  t h e  o r i g i n  t o  t h a t  

po in t ,  1,'' = 1 m sec-', and measuring tile angle a s  i nd ica t ed  

(Fig.  1 7 ) .  

Predicted winds for o t h e r  

Fig.  18 shows t h e  speeh and d i r e c t i o n  of t h e  r e a l  

winds. These w e r e  p l o t t e d  from t h e  t o w e r  da ta .  They re- 

present  t h e  speed and d i r e c t i o n  of t h e  maximum wind recorded 

for the t i m e  given. 

the night  was 17.5 m sec", from 1 7 2 " ,  a t  0323 CST,  very 

c lose  on a l l  measures t o  t h e  maximum p r e d i c t e d  (Fig.  1 7 ) .  

I t  should be noted t h a t  t h e  observed winds followed t h e  pre- 

d i c t ed  p a t t e r n  more c l o s e l y  a f t e r  0000 cST than  before, o r  

The h ighes t  wind speed recorded during 

I 
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a f t e r  t h e  top  of t h e  temperature inversion became coincident  

with t h e  low-level jet. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The acoustic radar proved to be a valuable asset to 

the study of the planetary boundary layer at the very outset 

of this research. The low-level jet-nocturnal inversion ob- 

served 31 July-1 August 1972 occurred when the conventional 

synoptic information indicated little of interest was taking 

place. The WKY tower data is much too voluminous for routine 

inspection The acoustic radar,record, however, can be exam- 

ined daily \ in a matter of minutes. Examination of the radar 

data for th night of 31 July-1 August revealed that some- 

thing had qccurred that warranted investigation. 

the acoustic radar as a monitor of the lower atmosphere could 

I 
The use of 

/ 

be very important. 

The case studies presented here suggest other impor- 

tant uses for the acoustic radar. AS theory predicted, these 

studies confirmed that the primary Sources of backscattered 

acoustic energy are turbulent fluctuations of temperature 

and Strong temperature gradients. This being true, much can 
5 2  
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be inferred about the temperature and wind structure of the 

lower atmosphere from the examination of acoustic radar data, 

The boundary between air masses of differing temperatures 

can easily be seen as was shown in the studies of the cold 

intrusion and the cold front. Changes in the height of such 

a boundary would yield qualitative information of the ver- 

tical motions along that boundary, This suggests that the 

acoustic radar should be a useful tool in the study of cold 

outflow from thunderstorms, fronts, thermal, and wave motion 

in the atmosphere, The indication of regions of strong wind 

shear on the acoustic radar data implies that the radar could 

be a valuable aid in aircraft operations, particularly in 

the case of light aircraft, to which strong shear is a 

definite hazard. 

Although these studies and the above suggestions have 

been limited to qualitative interpretation of acoustic radar 

data, this does not imply that the acoustic radar is limited 

to qualitative data only. Determination of the structure 

constants of wind and temperature and the use of the Doppler 

shift of the acoustic returns would yield quantitative infor- 

mation on horizontal and vertical velocities and temperature. 

The acoustic radar data was used in the study of the 

low-level jet occurrence not to suggest, but to demonstrate 
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the usefulness  of the radar. T h i s  j e t - invers ion  occurrence 

behaved almost exac t ly  as p red ic t ed  by Blackadar (1957) .  

The acoustic radar c l e a r l y  revealed t h e  sudden rap id  growth 

of the  inversion,  and a f t e r  t h e  invers ion  top  and t h e  j e t  

became coincident ,  t h e  r ada r  may have ind ica ted  a decrease 

i n  the  amount of t u rbu len t  mixing i n  t h e  invers ion  l a y e r  

below t h e  jet. T h e  decrease i n  tu rbu len t  mixing could not 

have been seen with conventional meteorological instruments.  

However, more s tudy i s  needed i n  t h i s  a r ea  t o  determine t h e  

c a p a b i l i t i e s  of t h e  acous t i c  radar  i n  t h e  measurement of 

tu rbulen t  mixing. 

A s i d e  from t h e  acous t i c  radar ,  t h i s  case s tudy o f f e r s  

some i n s i g h t  i n t o  one of t h e  most i n t e r e s t i n g  of boundary 

l aye r  phenomena. I t  suggests  t h a t ,  al though t h e  low-level 

j e t  does occur when o t h e r  temperature p r o f i l e s  a r e  observed, 

t h e  p re fe r r ed  o r  stable conf igura t ion  is  one i n  which t h e  

cernperature p r o f i l e  i s  somewhat s i m i l a r  t o  t h a t  of t h e  wind 

speed, and t h a t  when t h i s  conf igu ra t ion  i s  a t t a i n e d ,  the je t  

winds follow Blackadar 's  i n e r t i a l  o s c i l l a t i o n  c lose ly .  This 

conclusion must be viewed i n  t h e  l i g h t  of t h e  f a c t  t h a t  t h i s  

was the  study of only one such occurrence. Clear ly ,  more 

study is needed i n  t h i s  area. 
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Table 1 

Acoustic Radar Parameters 

Range 700 meters 

Frequency 1500 Hertz 

Acoustic Pulse Power 30 watts 

Pulse Length 42.6 milliseconds 

Receiver Bandwidth 70 Hertz 

Antenna Diameter 1.21 meters 



5 8  

E’i.9. 1. Acoustic r ada r  conf igu ra t ions .  ( a )  V e r t i c a l l y  
d i r e c t e d  monostatic.  (b) I n c l i n e d  monostat ic .  
( C )  B i s t a t i c .  T i n d i c a t e s  t r a n s m i t t e d  a c o u s t i c  
energy. R i n d i c a t e s  rece ived  a c o u s t i c  energy. 
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Fig. 3. S u r f a c e  analysis f o r  0000 CST 21 J u n e  
1972 (isobars labeled in mb,  i.e.8 
12 = 1012 mb). 
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F i g .  5. Temperature p r o f i l e s  (OC) f o r  0035, 0051, 
0107, 0115, and 0130 CST 2 1  June  1972. rd 
profile is  the dry ad iaba t i c  lapse r a t e .  
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TEMPERATURE (C) 
F i g .  7. Temperature profiles ( ' C )  for 0620, 0646, 

and 0725 CST 21 June 1972. rd profile i s  
the dry adiabatic lapse rate. 
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Fig. 8 .  Surface analysis for 1700 CST 4 August 
1972 (isobars labeled i n  m b 8  i.e.8 

18 = 1018 mb) .  



G 8  

I 
156 

b 156 
4 

I59 

F i g .  9. Height contour pattern at the 850-mb level 
f o r  1800 CST 4 August 1972 (contour inter- 
val is 30 m). 
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F i g .  l l a .  Schematic diagram of t h e  i n e r t i a l  o s c i l l a -  
t i o n  and its e f f e c t  on the  boundary l aye r  
winds. v ( t l )  and V ( t 2 )  a r e  pred ic ted  r e a l  
winds for  t i m e s  tl and t2. 

I- 
I a 
W 
I 
- 

WIND SPEED -.- 

A\ 
Initial Wind Profile Wind Profile after 

6 Pendulum Hours 

+ TOP of Inversion 

Fig.  l l b .  Schematic i l l u s t r a t i o n  explaining t h e  
evolut ion of a boundary layer  j e t  pro- 
f i l e  (Blackadar, 1957). 
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Fig. 12a. Surface analysis for 0000 CST 1August 
1972 (isobars labeled in mb, i.e.8 
16 = 1016 m b ) .  
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F i g .  12b. H e i g h t  c o n t o u r  p a t t e r n  a t  the 850-mb l e v e l  
for 1800 CST ‘31 July 1972 ( c o n t o u r  i n t e r -  
v a l  i s  30 rn). 
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Fig. 15. Temperature prof i les  (OC) a t  5-min i n t e r v a l s  from 
2348 CST 3 1  July to  0008 CST 1 August 1972.  
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F i g .  16. Temperature ( O c )  and wind speed ( m  sec’l) pro- 
f i l e s  for 0032 CST 1 August 1972.  
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Applicat ion of t h e  i n e r t i a l  o s c i l l a t i o n  t o  t h e  
real  (V,) and geostrophic  (Vg) winds as de te r -  
mined n e a r  sunse t  31 July 1972,  Given a r e  t h e  
v a l i d  t i n i c  (CST) wind d i r e c t i o n  (degrees) and 
wind speed ( m  sec-I) ,  i.e., a t  0545 CST t h e  wind 
was p red ic t ed  t o  be from 192' a t  a speed of 16.0 
m sec-1. 
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0323 - 0355 

Fig. 18, Hodograph of observed winds for 31 July- 
1 August 1972. 
of 2 m sec-l, 
are at intervals of 10 degrees. Times 
are CST. 

Isotachs are at intervals 
Isolines of wind direction 

NASA-Langley, 1974 


